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CUSPED WAVE FRONTS IN ANISOTROPIC ELASTIC PLATES
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Abstract—A method, applied previously to isotropic plates, is extended to anisotropic plates to obtain the high-
frequency transient response for cases where some of the wave fronts are cusped. A multitude of wave fronts are
found, which result from the multiple reflections in the plate and which are not present in the isotropic case or in
some anisotropic cases. Wave-front approximations and the approximate response near the tips of cusped wave
fronts are derived from integral representations for the response.

1. INTRODUCTION

THE method given by the author and Miklowitz [1] for obtaining convenient high-frequency
modal representations for the response of an infinite, homogeneous, isotropic, linearly
elastic plate is extended to certain anisotropic plate materials. The emphasis is on materials
for which cusped wave fronts are expected about the loaded face of the plate ; other cases
being very similar to the isotropic case. An impulsive normal line load is considered,
although the method applies for any impulsive loading which initiates plane strain motions
and for which a modal solution can be obtained. The lowest modes, which contain the
surface waves and the low-frequency compressional and flexural waves, are not included in
this work.

There is a moderately long history of work on wave propagation problems in aniso-
tropic elastic solids. Even so, only in recent years have transient solutions appeared for
geometries more complicated than the infinite space. Musgrave [2] first realized that cusps
could occur on some of the wave fronts if the elastic constants satisfy certain conditions.
The presence of these cusps greatly complicates the mathematics. Kraut [3] overcame these
difficulties for a half-space problem by using Cagniard’s method in conjunction with
considerable analysis of difficult integrals in the complex plane. Scott and Miklowitz [4]
used Cagniard’s method to obtain wave-front expansions for the more complicated plate
geometry, but for cases where cusps were not present.

The purpose here is to by-pass Cagniard’s method, which has not been used for plate
problems involving cusped wave fronts and use a method resulting in accurate high-
frequency representations. This approach is not complicated by the presence of some
cusped wave fronts, as contrasted with Cagniard’s method, and is only slightly complicated
by cusped wave fronts about the loaded plate face.

This method takes the modal solution as a starting point and ultimately results in a
solution in which individual terms in an integral representation can be identified with the
response associated with individual wave fronts in the plate. The resulting representation
can be evaluated numerically or approximated to obtain very accurate high-frequency
representations for the response of the plate. This solution is more substantial than single-
term wave-front expansions obtained by ray techniques, and it is independent of the cor-
responding half-space solution.
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The modal solution is written in new variables in Section 2, which requires considerable
knowledge of the branches of the frequency equation. An altered form of the modal solution
isgiven in Section 3, which is amenable to high-frequency approximations and which readily
exhibits the response associated with individual wave fronts. The solution is approximated
in Section 4 and the wave-front geometry is discussed in Section 5. Various interesting wave
fronts come to light as a result of the multiple reflections in the plate and the presence of
cusps. The solution is further approximated in Section 6 to obtain information near
singular wave fronts, including the region near cusp tips. The approximate response at a
specific time and location in the plate is obtained.

2. THE MODAL SOLUTION IN THE y%,n VARIABLES

A class of anisotropic plate materials is considered for which all of the elastic constants
¢;j(notation used by Love [5]) are zero exceptfor i, j = 1-3andi = j = 4-6. With¢;; = c;;,
nine independent elastic constants, at most, remain. The same class of materials was treated
by Scott and Miklowitz [4]. An isotropic material certainly belongs to this class, along with
orthorhombic, tetragonal, cubic and hexagonal crystals, and orthotropic and transversely
isotropic materials. Positive definiteness of the strain energy function requires that ¢, ,,
C33,Cs5 > Oandthatc,,c55 > ¢?,. Further, itis assumed thatc,,, c;3 > 55, asis the case
in most real materials.

Plane strain motions (g,, = 0) are possible in this class of anisotropic materials and
only two of the three basic waves are coupled through reflections at a free boundary
x5 = const. There are only two thickness wave numbers associated with these coupled
waves. Further, if the x, displacement component is zero and all other quantities are inde-
pendent of x,, then the stress component ¢,5 = 0.

The plane strain equations of motion of linear elasticity for these anisotropic materials
are

do,, doy3  %u do,y do35 _ O*w

ox, Tox, PaT ox, T ox, Pan

(1)

where
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The displacement components in the x,- and x;-directions are u and w, respectively.
The infinite plate —H < x; < H is subjected to the boundary conditions (5 and &,
are delta functions)

033(x1, H, 1) = —150(x,)0 (1), o33(xy, —H, ) =0, o13(xy, £H, ) =0, )

and is quiescent for r < 0. The radiation condition requires that all dependent variables
vanish as |x,| — 0. The constant I is the impulse per unit length along the line of loading.

The formal solution of this problem results by employing a Laplace transform on ¢
and a Fourier transform on x, . The modal solution remains after the Laplace inversionasan
infinite sum of residues from the zeros of the frequency equation. Such solutions are found
in the work of Scott and Miklowitz {4, 6] and the derivation is not repeated here. However,
some discussion of the modal solution is given.
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Mathematically, the most difficulty in evaluating the modal solution occurs if
(¢y3+¢s5)? > c33(cqy —Cs5), 3)

which, according to Musgrave [2], is the condition for cusped wave fronts about the plate
face x; = H. It will be assumed throughout that (3) holds and the simpler cases where (3)
is violated will be discussed only in passing.

The two thickness wave numbers occurring in this solution are a;, j = 1, 2, given by

2033C55°‘J2 = (C33+Css)pw® —[cy 033+ Cis —(cy3+¢55)* I+ (= 1P{[(c} c3; —¢55)
—(ers+essleteds+ess) —(egs +055)° Kt
—2[(e33 = €55 Mer 1633~ c5)— (€334 Cs5)(Cq3+ 055K’
+(cy3—ess)’p*0t)? )

where o is the frequency and « is the wave number, as well as being the integration variable
in the modal solution. For definiteness, «; = |o| is taken when «; is real and o; = —ia}|
when it is pure imaginary.

The rather complicated frequency equation in the k, w variables, not listed here, has
branches @ = w(k}, which are investigated and discussed in the literature, generally for
k and w not large. Some of these references are Anderson [7], Abubakar [8] and Kaul and
Mindlin [9], the last being for the more complicated monoclinic crystal plate.

The reasons for replacing the «, w variables are even more compelling than for the iso-
tropic case [1]. The following solution depends at many stages on the new variables and,
significantly, it is not much more difficult than the isotropic case in these variables. In the
K, o variables, the problem verges on the impossible.

The new variables are

x = (o —ay ), +0ty), n = H(a,+a;) &)
with y replacing «k as the integration variable in the modal integrals.
The inverse functions are
o =nll+(-1Yx/2H, j=12,
K = nle (1+ 1) +cy(g(x)*1*/2H, (6)

o = (cs 5/9)%"7[%(1 +x%)+ca(gl)?1}/2H
where
g = 1+ %P —cs(1—x*)?

andthe constants ¢;, j = 1-5, are listed in the Appendix. The branches of the outer radicals
in (6) are chosen so that k and ¢« are nonnegative when they are real for Re(n) > 0. Re( )
and Im( ) denote real and imaginary parts of a complex quantity. The branches of (g(x))?,
both of which are involved, are defined in the following.

The branch points of (g(x))* are located at x,, —1/%er» — Xor and 1/x., where

Yer = €Xplif,,), 0., = tan"[(—c5) " *] (N

with 0 < 6, < n/2. The Riemann surface of (g(x))? is defined by taking branch cuts on
x = e’ between x . and — /x, (6., < 6 < n—6,)and between 1/y,,and —y ., (—6., = 6 >

cr =

6. —n). The branches of (g(x))* are defined by making (g(y))* positive on sheet (I) and
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negative on sheet (II) for y real. (I) and (II) will be used throughout to designate these sheets
and quantities on them.
1f (3) does not hold, these branch points are either on the Im(y)- or Re(y)-axis. For the
isotropic case, ¢s = 1 and the branch points merge at y = 0, co making (g(x))* = +2y.
The frequency equation in the variables (5) takes exactly the same form

sin(n) £ R(y) sin(yn) = 0 (8)

as in the isotropic case. The signs relate to symmetrical (4+) and asymmetrical (— )} waves
with respect to the midplane x5 = 0 of the plate. The simple form of (8) is fortunate since a
detailed investigation of the branches n(y) is contained in [10]. The only complication is the
function R(y). While R(y) is a rational function of y and Poisson’s ratio for the isotropic
case, it now takes the form

R(x) = Ry, ¢11,€33. €13, C55) = [P+ r{— 0}/ [r(0)—r(— 0] ®)
where
) = (1= 0+ +esl+ 1)) — celgl)* I — (1 — 0 + co(1+ 1B + (g1

The constants c;, j = 6-8, are listed in the Appendix and in r(—y), (g(— ) = (g()*
R(x) can still be interpreted as a reflection coefficient on (I}, as can 1/R{y) on (II).

The first objective is to find the mapping of the modal solution integration path
0 < x < oo onto the complex yx-plane. This is not trivial since it is determined by (5) or
inversely by (6). As such, it involves the branches w{x) or 5{y) of the frequency equation.

If the branches w(k) are real for 0 < k < oo, as can be expected, then it is helpful to
observe that, by {6), w/k is real only on |y = 1, the Re(y)- and the Im(y)-axes. Specifically,
w/x is real on y = e* only for -8, < # <, and ~8,, < 8 — n < 6, on both (I) and
(I1). On the Re(y)-axis, /k is real for all y on (II) and for (a— 1)/(a+ 1) < [x] < (a+ D/(a—1)
on (I). The constant a is given in the Appendix. The point (a—1)/{a+1) along with its
reciprocal, negative and negative reciprocal are zeros of x, which are all on (1). Similarly @
has four zeros on (I). The Im(y)-axis is of interest only for the lowest symmetrical and
asymmetrical branches, and then only if the zeros of w are on this axis.

As in the isotropic case, only the half disk

<1, Im() =0 (10

need be considered for a complete understanding of the branches, and only y = e,
0 <8 <mand —1 < y < 1 appear to be possible integration paths for all but the lowest
branches.
The following results are derived in [10] for the infinite set of branches () of (8) on the
boundary of the half disk (10):
(a) If -1 <« R < land —1 < yR < 1, all branches are real.
(b) If —1 < 1/R<1and ~1 < xR < 1, real multi-valued branches connected by
complex loops are present.
© If —1<1/R<1and —1 < 1/{3¥R) < 1, both real and compiex single-valued
branches are present.
{d) IfIR| = 1 and |y = 1, two sets of branches are present, which take the forms

n(e”) = |yl e, (11a)



Cusped wave fronts in anisotropic elastic plates 35

called a, branches, and
n(e’®) = ijn| e™2, (11b)

called «, branches.

Thus, it merely takes an investigation of R = R(y) to determine the form of the branches
n(x). These results are illustrated for a typical a, branch #,{x), n = 1,2,3,..., in Fig. 1
along with its mapping into the x, w-plane as the branch w,(x). The two lowest branches,
n = 0, are not precisely of this form. No distinction is made between the symmetrical and
asymmetrical branches in this notation.

n{x) 19, ("N

w, (&)

L a7

sy - SIS

AL T
2
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o o X x=| g, w2 8 «
8=0

FiG. 1. A typical a, branch ,{x) n = 1,2,3, ..., and its mapping w,{x) for 0 < x < c0: O-@-Q, sheet
0); O-@-G, sheet (II).

Of the conditions preceding (11a), (a) is satisfied on (I) for (a— )/la+1) < y < 1 with
R = 1 at both end points. (d) is satisfied on 0 < 6 < 6., on both (I) and (I1) with

R(e") = "), 6) = 2 tan™ [ —ir(—e')/r(e™)] {12)

and 0 < y(0) < n_where 7(0) = 0 on (I) and y(0) = = on (II). There is a branch point on this
branch at y,, = €. The figure is drawn as if (b) is satisfied on (IT) for 0 < ¥ < 1; however,
{c) may also apply over some of this interval. This depends on the location of the point

-1 2¢,3{c33les3(cq, ‘Css)—da}}%

— aifo —
Yo = €0, 8, = tan 5
ctslcy1¢33+ 26,3633 —¢13)

(13)
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where yR(x) = — 1. This point moves off y = ¢, 0 < 6 < ¢,, and onto the Re(y)-axis,
0<y<1,for

iy > casley; —css). (14)

If this is so, (b) is satisfied for 0 < y < y,and (c) for y, < ¥ < 1.

The subscript on g, refers to the fact that this point is the zero of the lowest symmetrical
branch 74(x). Hence, the low-frequency plate velocity is given by w/k|, -, from (6). It
is noted that the plate velocity is less than (cs5/p)? if (14) holds.

The numbers O-® in Fig. 1 label corresponding points on the branch 4,(x) and its
mapping w,(x). The point y., or ® is seen to be a branch point only in the y, -space. Point
® is meant to be the limiting point y — 0 or k — .

A partial grid made up of the curves a; = p;n/2H, p; = 1.2,3,..., is shown in Fig. 1.
These are hyperbolas, as they are for the isotropic case, in the x, #-space ; however, they are
more complicated curves given by the algebraic functions (4) in the x, w-plane.

Itis of interest that finite, real points commonto o, = p,n/2H and the line w/x =(css/p)*
exist only if (3) is satisfied. In which case, an «, curve finally becomes an «, curve on the line
labeled a; = a, in Fig. I where /x|, -, < {c5s/p)*, given by (6) on (I1). This corresponds to
the radical in (4) vanishing, and, specifically, to the largest zero w/x of this radical.

Of similar interest is that the a, curves are concaved downward at x = 0, as shown in
Fig. 1, only if

(Cra+es55)% > cyy(ca3—0Cs5). (15)

This is a counterpart to (3) and, by Musgrave [2], cusped wave fronts are to be expected
about the x;-axis in this case.

Some of these features in Fig. 1 are exaggerated in the x, w-plane. Specifically, the
lines w/k = (cs5s/p)* and a; = «, are separated more than could be expected for most aniso-
tropic solids. This is done to show more clearly how the grid and the branches map into this
sector.

The asymptotic behavior of the branches, which approach the value w/«|,., just
mentioned, is not smooth as x = ¢ [or y = 0 on (I1)]. The behavior of the branches is
smooth only if (3) does not hold so that w/k — (css/p)®. It has not been shown that the
branches w, (k) are single-valued ; however, it is a good assumption that they are, but would
be difficult to prove.

An infinite set of «, branches, satisfying (11b) on x = €, 0 < 0 < 6,,, also exists and
they are denoted by #,(x) for both the symmetrical, m = 0,1,2...., and asymmetrical
branches,m = 1,2,3,.... Both » and w are pure imaginary on these branches for y = eff
0 < 0 < 6,,. The o, branches are unbounded at y = 1 (6 = 0) on both (I) and (I1I) and they
also have branch points at ., = €%-. On (I) they continue onto the real branches #,(x)
on (a—1)/(a+1) < ¥ < 1 by continuations like the dilatational continuations described
in [1]. Similarly, on (I1) they continue over the real branches and the complex loops con-
necting at the branch points on the Re(y)-axis. The o, branches are not involved in the modal
solution until it is replaced with a more convenient high-frequency form in Section 3,
where these latter continuations are discussed in more detail.

The integration path C, consisting of the paths C and C", is shown in Fig. 2. The fact
that this is a mapping of 0 < k < oo for the branches w,(x),n = 1,2, 3,. .., results directly
from Fig. 1. Since the branches 77,(y) are multi-valuedon0 < x < lon(Il)[oron0 < ¥ < xo
if (14) holds], the branch points are encircled as shown on the right of Fig. 2. This gives the
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FIG. 2. Integration path € = C®4C™. Detail of C' and the accompanying continuation over a
multi-valued branch: solid line, sheet (I); dashed line, sheet (II).

proper mapping indicated in Fig. 1. This feature makes the integration paths different for
different branches, but only for C% on the Re(y)-axis.

The solution of this problem is identically zero in the region beyond the front-running
wave front in the plate, the form of which becomes clear in Section 5. In the remaining region,
the modal solution in the y, n variables is given by

u(x,,x;;,t)) - 8Io(cy3+¢55)%(css/p) & (“rt(+)+un(“)) (16)
w(x,,X5,1) nHe 3¢55(C1—Cs5) #=0 Waes) ™ Wa—)
where
{un(t)) :j sin(wt) ( U(x) sin(cx, ) (f 4y, — ) )I & )
Waiy)  9€ 080D EXR0) oS\ W () cos(ex ) (¥4 y1 = Fiay2)! =i

i 1y; = f{x) sin(o H) cos(a;x3),
#,_y; = flx)cos(o, H) sinfx;x5),
Ty Gok=1.2; k#))
Wiy = hi(x) sin(e, H) sin(a;x5),
W_y; = hx) cos(aH) cos(x;x,),

cra(l+2)

1) = g B (= (= D+ el ) —ale0))

h = — <UD s, + o+ D) — el 0

M= e res)U—p 1+t 137 o A
a2

Uly) = x+00-7)

(€00 es(1 + 20 + calg ) P r —r(— 01
W(n) = o, U(r)/x = (1 — U@/, 1+ P+ (8]
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The (+) signs refer to symmetrical and asymmetrical waves as in (8); «;, x and w are given
by (6); the symmetrical and asymmetrical branches, both denoted by n,(y),n = 0,1,2,...,
satisfy (8), and are a, branches of the form (11a) on y = e?; and the integration paths C
are shown in Fig. 2 except for the lowest branches, n = 0, which are not of interest here.

If (3) does not hold, the integration path C is exactly the same as for the isotropic case
[1], running from (a—1)/(a+1)to y = 1 and thento y = —1 on y =€, 0 < § < n. The
path actually terminates at y = ifor the special case of an equality in (3). Another exception,
which also does not lead to complications, occurs if (¢;3+¢55)* < Hcy3—¢55)(c;; —C55)
so that the zero (a—1)/(a+ 1) of k moves onto the second sheet and slightly alters the
beginning part of C. The method described in [1] can be used to obtain high-frequency
approximations even for anisotropic materials with (15) applying. so that cusped wave
fronts exist about the x;-axis, and for materials such as beryl crystals, treated by Kraut [3],
in which wave fronts occur with cusps free of the coordinate axes (axes of symmetry).

3. THE MODAL SOLUTION ON THE a«, AND a, BRANCHES

By symmetry, only half of the plate need be considered. The modal solution which
follows is valid only for the response of the right half, x; > 0, of the plate except for the
response associated with wave fronts which have cusps extending into x; < 0.

For the proposed method to succeed, (17) must be written in a special form. Otherwise,
convergence is lost and clearly incorrect answers result. Thus, the integrals in (17) are

written as
un(i)) _ (Im) {J (U1(X, n, X3, t)) e
L Re M 4 W1(X, 1, X3, 1)

f ( Ut 1, %15 xa)) it
+ €

)
cao AW, x4, x3) 7=1n(x)

UB.n,x5,0) .
o ( ) dx} (18)
can WZ (X’ N, X3, t) n=nn(x)
with C® and C™ shown in Fig. 2. The first integral is associated with «, through .,
and W,.,, and the last two integrals are associated with «, through #,,, and W ,,,. Thus,
the functions U, W;, U9, etc., are obtained directly from (17). For simplicity of notation,

the subscripts (1) are dropped from these functions.
Using the notation in (18), the modal solution on the o, and a, branches, with ¥ and w

still given by (16), is
© [y Im\{ = Uy . uPy
)AL [l
n=1 \Wp(+) Re n=1vCYP W1 W(z)
© U ) U(l) )
w5 Lol
m=0,1vc®L\W), W(z) n=nm(0)
© -U . umy
e Ll T[] ]
n=1vc{® W1 W2 n=nnlx)

@ U ) -y .
+ Y f [( ’) e"‘"‘+( o )e’“‘"‘:| dx}. (19)
m=0,1 vc{® L\W,; W(z ) 1= Nm(x)

dy

n=nnlx)

dy

dy

n=nn(x)

dx

dx
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The lowest symmetrical and asymmetrical modes, n = 0, are not included here and they
can be evaluated by other, less complicated means. The branches #,(x) and 7,(x) are the
o, and &, branches and their analytic continuations and the branch m = O is involved only
for the symmetrical case. The integration paths in (19) are shown in Fig. 3. C§ and C{ run
from (a—1)/(a+ 1) to ., in any manner such that they remain to the left and right of certain
sets of branch points of the branches over which the integration is being carried out. The
isotropic case [1] is referred to for details of similar branch points and paths of integration.
Both C{V and C{" must remain to the right of any branch points of their branches on (II)
of the half disk (10). All other branch points are on 0 < y < 1 unless (14) holds, in which
case, these paths should be to the left of them.

Im(x} Im(x)

’[ ]
(]I)\I \
Ce // \
//// b)
- P ¢
oL ' Re(x) 0 "'Re (x)

F1G. 3. New integration paths: solid lines, sheet (I); dashed lines, sheet (II).

The equivalence of this modal solution (19) and the original form (16) is argued in the
same way as was done for the isotropic case [1]. The new form is shown to be a reairange-
ment of the original form.

The first two integrals in (19) are equivalent to the part of (16) resulting from integration
over C? by almost exactly the same argument as for the isotropic case, which is not repeated
here.

The paths CY? and CYP are deformed onto 0 < y < 1 with indentions for branch
points. Deformed CYV then continues from y = 1 to x., on y = e, 0 < 6 < 6,,, and the
integration is over the o, branches exactly as in (16) for the part of C™ which is on this
segment. On 0 < y < 1 these integrals must add together in such a way as to just leave
integrations over the real, multi-valued branches #5(y) shown in Fig. 1. This is the case,
and it is explained by referring to Fig. 4, showing a typical situation involving two branch
points and a complex connectingloopon0 < y < 1[on0 < y < x,if (14) holds]. Deformed
C{ carries its branch [an analytic continuation of an o, branch #,,(x)] over real values and
complex values with Im(n) > 0 (positive half of the loops). Likewise, deformed C{V carries
its branch [an analytic continuation of an «, branch #,(x)] over real values and complex
values with Im(n) < 0 (negative half of the loops). Every loop is covered as shown in Fig. 4,
and a simple calculation, using the fact that *(y) = n,,(x) (* denotes complex conjugate) on
this loop and that U,, W, U%" and W{V are all real for y and 7 real, shows that these
integrals cancel on the loops. Thus, precisely the correct integrations over the real branches
on 0 < ¥ < 1 remain.
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For (14) holding and y, < x < 1, these branch points are off the Re(y)-axis with half
of them being interior to the half disk (10). The equivalence follows similarly with the
additional cancellation on the branch line integrals.

Collecting these results, the solution (19) is equivalent to the original modal solution
(16) by deforming paths of integration and rearranging parts of the integrations and sum-
mations.

4. THE HIGH-FREQUENCY APPROXIMATION

Another reason that the form (8) of the frequency equation is fortunate is that series
representations for the branches, given in [1], are valid here. The dependence there on R(y)
is arbitrary and (9) can be used in those series. The a, branches correspond to the equi-
voluminal branches and the o, branches to the dilatational branches. Convergence follows
from the isotropic case and the branch points at y., do not alter convergence since they
enter through R(x). Thus, uniform convergence with respect to y =€, 0 <8 <6,
on (I) and (II) is assured on any closed segment with 8 = 0 excluded for the «, branches.
Asin the isotropic case, the lowest symmetrical branches, n = 0 and m = 0, share a branch
point at y, given by (13) so that their series converge on somewhat smaller segments. Con-
vergence off y = €'’ is a much more difficult question. However, the region of convergence is
still determined by the location of branch points of the branches. These branch points can
be shown to move closer and closer to the Re(y)-axis as the branch numbers n and m
increase, at least near (a—1)/(a+ 1) on (1) and x = 0 on (II), which are end points for the
integration paths in (19).
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Thus, these series representations are appropriate to use for a very accurate high-
frequency approximation of the modal solution (19). Rather than list the details of the
approximate integrals which result,as was done in [1], some of the steps in the derivation are
given and certain of the results are discussed.

As in the isotropic case [1], the important terms (those which contain singular wave
fronts) in (19) are those associated with o, denoted by the subscript on U, UM, etc., with
the integration over the corresponding a; branches. These are the second term in the first
integral, the first term in the second integral, the second term in the third integral and the
first term in the fourth integral. The integrals are labeled 19}, 1Y) , 1Y and IV, respectively.

For example,
© [}
I(l) —_ (Im) z f (UZ ) eiut
22 Re/ /&y Jop \ WO

After these integrals are approximated and the symmetrical and asymmetrical parts are
added, they correspond closely with those in [1] as follows : I}, + I} with I, and I{, with
1,4, while I} has no counterpart in the isotropic case or in any anisotropic case where (3)
doesnot hold. The other four integrals in (19) are not zero ; however, all of their singularities
are canceled by the integrals just mentioned. Thus, they are not involved in representations
for the singular wave fronts.

Phase functions are defined as

dy.

n=nnlx)

[wt—(—1Y¥xx, +a,H+ayx3]/n on ()
W (x,, x5, 8 %) =
[kx, —(—1Yot-+oa,H+oyx3]/n on (II),

20
Dy(x,.x5,1, %) = [kx, —(— Yot+a,x; +o,H)/n on (I) and (I1) (20)

where the upper signs apply for / = 1-4, the lower signs for /£ = 5-8 and x; is replaced with
—x, for £ = 3,4,7,8. Then, for example, from symmetrical U% e, terms containing
exponential functions can be written as

. . . t 8 .
sin(kx,) sin(x, H) cos(o,x ) €' = 3 Y Sy et
£=1

where (S,,)=(—1,1, -1, 1,1, —1,1, = 1).
The parts of the integrands in (19) containing the branches #(y) are expanded using the
following series representations from [10]} (®, can be replaced with ‘¥, throughout). The

series
in®,

2

n=nn(x) 1+ X p.

[
cos(n)+ xR(x) cos(xn)

iEON D, —1—(1 — -2
A (X’ (D{) e' OHOD, ( xp q] ( !l)
0

18

is for the symmetrical «, branches,n = 1,2,3,... ,where EQ(y) = {2nm—ilog[R(x)1}/(1 +3)
and A4,,(y, ®) are given in [1]. The series for e"®/[cos(n) — xR(x) cos(xn)], where n = 1,(x).
n=1273,...,are the asymmetrical «, branches, is given by (21) with 4, replaced with
(—1)PA,, and E with E{? ,. Similarly,

eiﬂ@/

cos(n)+ xR(x) cos(xn)

2 2 .
— . Z A;,q(X’ ®,) e D@+ 1 +(1+ )p+2q] (22)
—X p.g=0

7= 0mlx)
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is for the symmetrical o, branches, m =0,1,2,..., where D®(y) = {2m+)m +
i log[R(x)]}/(1—x) and A}, (x, ) result from [1]. The series for e"™/[cos(n) — xR(x) cos(xn)],
where n = 71,(x), m = 1,2,3,..., are the asymmetrical «, branches, is given by (22) with
A, replaced with (—1)P 4, and DY with DS .

These series can be expected to converge uniformly with respect to y on the same regions
on which the series for the branches #(y) converge. This is true since the branch points are
identified as simultaneous zeros of (8) and the terms cos(n)+ xR(x) cos(xn) (see [10]) and
their location still determines the regions of convergence.

These series are used in (19) and the double summation on p and q is brought outside the
integrals. The paths of integration on the resulting term-by-term integrals are then deformed
as follows: CP+ CY is deformed back onto the original path C in Fig. 2 and C{" and
C{" are both collapsed onto the Re(y)-axis. Singularities arising from zeros of R(x) through
log[R(x)] are still a problem, as in the isotropic case [1], but they seem to defy analysis, and,
on this point, the approximate solution will have to stand on the validity of the final results.

This being done, and with the extended phase functions

W, = 2[¥Y,—1=(1=20)p—2q]/(1 + ),
®,,, = 2[®,+ 1+ (1+)p+2q1/(1—y)

defined, the summations over the mode numbers n and m are brought inside the integrals
and carried out by using

(23)

ie“‘"‘” —%4— Z (D —2m)+ = cot( ) (24)
=1

m= —oo

for ® = ®,,,,¥,,, real. This is always true except for some cases on y = '’ where
Im(¥,,,) > 0and (24)is summed as a geometric series. All quantities in (19) can be summed
in this way, even though the emphasis here is only on the singular terms.

The result of these calculations is a sum of integrals over p,g = 1,2,3,...and £ = 1-8,
similar to those derived in [1], some of which contain the wave-front singularities. The
integrals are appropriate for numerical evaluation or for approximation near the wave
fronts. Also, just a few of the integrals give an excellent high-frequency approximation for the
response of the plate for early times when there are few wave fronts present.

5. THE GEOMETRY OF THE WAVE FRONTS

With® = ®,,,, '¥,,, from (23) replacing x or 8 as the integration variable, the condition
for a singular wave front is the simultaneous satisfaction of

® =2m, do =0 (25)

dy
for any integer m such that @ is in the range of integration. The first of (25) gives the singu-
lar points of the generalized functions in (24) and the second gives an additional singularity
in these integrals. When these coincide, as indicated by (25), the integrals fail to exist giving
rise to a wave front singularity. The second of (25) is satisfied only for £ even, except for a
few cusped wave fronts extending into x; > 0, which are mirror images of terms with /

even. Thus, only terms with £ even are considered.
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Parametric equations for the wave fronts are given by (25) with x, £, p and g being the
parameters. In order to investigate (25), the dimensionless quantities
= xy(p/css)H/t,
Z‘/,L, = [(2p +2q+ DH —(= 1x3](p/ess)*/t, (26)
0%, = [2p+2q+ 1 ¥(— 1Y]H(p/css)/t

are defined where j = 1, 2 refers to terms associated with the «, and «, branches. The
comments regarding the (1) signs and the sign of x; following (20) also apply here for
¢ = 2,4, 6,8. To simplify notation, wave fronts from the various integrals will sometimes
be identified by the parameter

Q; = tless/p)* QW /H = 2p+2q+1F (1Y 27
rather than QY),, and the sheet numbers will be affixed to this parameter, as Q¢ and Q{".

The parametric equations (25) for the a, wave fronts contained in 1%, and I ‘2"2’ become

L = F,()) £ F,(0Q%%y
Z(I%n)q = iF3(X)+F4(X)Q[pq’

resulting from ¥,,, with the upper sign on (I) and the lower on (II). The functions F(y),
J = 14, are listed in the Appendix.

It is significant that the parametric equations (25) for the «; wave fronts contained in
I, and I} and resulting from ®,,, on both (I) and (II) can be obtained from (28) on (1)

by making the changes Q%2 — Z'2, and Z2), — Q%)) This results in

= [F1(0Fa(x) — F2()F3(0) + F2(00Q% p/Fa(x)
= Fl(_x)+F2(_X)Q}1p)q9

ZP g = [=F(0+ Q81/F(x)
= Fy(— )+ Fa(— 0)Q-

The form involving F{— x) just results from properties of these functions and is listed only
as a convenient, compact set of equations.

As a result of this interesting relationship between (28) and (29), the geometry of all
wave fronts in the plate is derivable from a surface in the L, ZZ2), , 03 -space given by (28) or,
equivalently, in the L, Q%) , Z{") | -space given by (29). This surface is shown in Fig. 5. The
small interior cusped part of the surface results from sheet (1I) and is present only if (3)
holds. Similarly, the cusped part of the surface in the foreground is present only if (15) holds.
The o, wave fronts, shown as solid lines, result from vertical slices through this surface;
while the o, wave fronts, shown as dashed lines, result from horizontal slices of the same
thickness. The thickness is inversely proportional to the time, resulting in more wave fronts
in the plate at later times, as expected. This vividly illustrates the coupling of the &, and o,
wave fronts due to reflections at the plate faces, and the possibility of many cusped wave
fronts.

These wave fronts are shown in the plate in Fig. 6. The parameters Q" and Q{", defined
by (27), identify these as «; wave fronts from sheet (I) or (II). For example, the wave fronts
Q% result from the response contained in the integral I, . The figure is drawn with successive

(28)

(29)
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tmq’ “Lpq

F1G. 5. Surface containing the wave fronts: upper signs, sheet (I); lower signs, sheet (II).

thicknesses of the plate repeated so that the wave fronts appear as smooth lines. The hori-
zontal lines represent the faces x; = + H of the plate and the figure should be folded as an
accordion at these lines to visualize all of the wave fronts in a single plate thickness. The
figureisdrawn at a rather late time when many wave fronts are present, not to complicate the
situation, but to insure that certain interesting wave fronts are present in the plate.

(cyq/p)2 (c,/p)"
S 0%
X, ), Pl PN P (),
- a0 X |l Lo
P, 04 - ,/’ _,Q(I)= 2
z, rd 2
Q2 S fai2 2T Q-4
/’0(2%4 ot

Fa
m:“/’l ’//’;LQ(} 6
rd

- ' 1)
s Qft 10
- 1)
- = Q(2=|2
Qj-1a

FiG. 6. Wave fronts at ¢t = 2H(p/css)/0-17 for ¢, = 6, c33 = 5, ¢,3 = €55 = 3: solid lines, a, fronts;
dashed lines, a, fronts.
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The head waves (1) and (II) are not singular for the displacement resulting from the
loading (2); however, they are shownin Fig. 6 (and in Fig. S)and they result from W5 = 2m,
¢ = 2,4, at the single point y = 1. Both waves are associated with the factor 1 —y in the
modal solution. Head wave (I) is just a generalization of the familiar isotropic head wave.
However, head wave (11} is present only if (3) is satisfied. Head wave (1) occurs in the simpler
half-space problem and it was studied by Kraut {11].

New results contained in Fig. 6 concern the multitude of cusped wave fronts. Reflected
x, wave fronts always originally have cusps about the x,-axis (O’ = 8, 10, 12), and after a
sufficient amount of time these cusps disappear (Q = 2, 4, 6). The reflected «, wave fronts
do not have cusps about the x,-axis at first (QY = 6, 8, 10, 12, 14), but they always finally
develop cusps (9 = 2,4). The enlargement of the tip of the cusp of 0 = 0 on the left
shows how a reflected a; wave front, Q¥ = 12, begins. It has a mirror image on the right of
x, = 0 and they will subsequently join together at x, = 0 as has Q" = 10. Q" = 0
reflects cusped a; wave fronts (Q{" = 2,4, 6) at the plate faces and these along with Q{1 = 0
reflect cusped «, wave fronts (Q4" = 2, 4).

Only the primary a, wave front, labeled both as Q¥ = 0 and QY" = 0, is numbered
@®-® corresponding to the points in Figs. 1 and 2. Thus, ©O-® is 0¥ = 0 and @-® is
0y’ = 0.

Velocities of three pointson x; = Hand x, = Qonthe primary wave fronts %' = 0and
O = 0, 00 = 0, and Q" = 0 are indicated in Fig. 6. In addition, point O has velocity
(css/p)*. These waves, along with the two head waves, would be present in a half space
x; < H. The unreflected portion of @ = 0 is the front-running wave front in the plate,
mentioned in connection with the modal solution (16). The point & has velocity w/ki, - o
given by (6) on (I1), which was discussed in Section 2.

6. WAVE-FRONT APPROXIMATIONS

A typical displacement integral is approximated near a singular wave front both near to
and away from a cusp tip. This is done to show the method of approximation and the order
of the singularities.

Only the integrals I, on @-® of 0 = 0and I{) on ®-@ of 0¥ = 0in Fig. 6 contain
the Dirac delta functions from (24) and, therefore, can be integrated directly. A —3 dis-
placement singularity is predicted as @-@-® is approached from the front (right) side.
This portion is a two-sided wave front, which is a generalization of the two-sided equi-
voluminal wave front in the isotropic case [1]. That work isreferred to for evaluation of these
integrals.

All other singular integrals result from the cotangent function in (24) and, adding the
symmetrical and asymmetrical parts, half of the singularities cancel leaving cot[(n/4)®]
or tan{(n/4)®] terms in the integrands. Thus, a typical displacement integral is

I=PV. f F(z) cot(gd)) dy (30)

where the smooth functions F{y) result from the previous integrals. Thisis a Cauchy principal
value integral due to the simple poles at @ = 4m. In fact, the wave-front singularities are
identified with values of x, x4, t for which these poles are not simple and (30) fails to exist
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even as a principal value. There is really no reason to use ® as the integration variable for
these approximations. The limits of integration are left indefinite and are meant to include
no more than one pair of singularities ® = 4m for some fixed integer m.

For purposes of discussion, it will be assumed that the response contained in I{} and
associated with the wave front " = 0in Fig. 6is to be approximated. Therefore, ® = @,
in(30)with/ = 8givingthe oddreflections. Thesearisefromsingularitiesat® = 4,8,12, .. ..
The ¢ = 6 terms have tan[(n/4)®] in the integrands and give the unreflected portion and all
even reflections from singularities at ® = 2,6,10,....

The first approximation of (30) is made away from a cusp tip. Using the notation

m _ d"®
¢ dxn E ’

X=Ae

x. is defined by making @, = 0. It is assumed that @ is finite (if it is infinitesimal, a cusp tip
will be found to be nearby) and the approximation

4
COt(Z'(I)) = ;[q)c —4m +%‘D:(;{ - Xc)z] -t

is used for ®,—4m small. Further, F(x) is approximated with F, = F(x)lo, - 1. (the value at
the wave front), and the approximation of (30) is

{4FC[—§{®C——4m)(D;’]‘* sgn(®,— 4m) = O(|D,—4m| ") for (®,—4m)d’ > 0 o
“loa) for (@.—4md! <0

for ®,—4m small.

Before (31) is discussed, the approximation near a cusp tip is given. It can be shown from
(29), or from (28), that if, in addition to (25), ®” = 0 is required, then dL/dy = dZ/dy = 0
(the inverse also holds) for Z = Z{!, . Z%) . This is obviously the condition for a cusp tip
since, geometrically, either or both L and Z must be stationary with respect to y at the tip.
7. is now defined by making ® = 0, and it is assumed that @/ is finite. The region of
consideration is restricted to that surrounding the cusp tip, rather than that inside the tip.
Proceeding similarly, except that

4
cot(gd)) = ;[®0—4m+¢)’c(x—-xc)+%d):"(x~xc)3]‘l

is now used, leads to the approximation

[ = —172F A

T D347+ 60D ) (347 +240;/®))*

A = [-3(®,—4m)y/® + B¥]F — [3(®,— 4m)/® + B*]},

B = (30,/@;)* +[3(®. — 4m)/®]'],
which is valid for ®,—4m and @, small and for B > 0. (32) predicts I = O(®,—4m|™%)
exceptfor thecase|®,—4m| « |®]. Regardingthiscase,f = O(totheorder ofthisapproxima-
tion) for @, # 0 and A = 0, which implies that ®_ = 4m.

To interpret that resuit in the x,, x5, t variables, let x; = f(x,, t) represent the solution

of (29) for Q1) = 0 so that it gives the curve Q{? = 0 in Fig. 6. Then it is a simple matter

’pq

to show that 8®_/0x, #+ 0 in both (31) and (32). Therefore, ®,—4m is a linear function of

(32)
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X3 —f{x,.t) near the wave front and
O(®.—4m)) = O(x3 —f(xy, 1)]).

A sketch of level curves for a displacement component (either u or w) is shown in Fig. 7.
The positive and negative signs depend on the sign of F, and only the differing signs is
meant to be emphasized here. The cusped wave front itself is labeled + o0, it being singular
for the loading (2). The wave front propagates from left to right and expands downward, as
does Q1" = 0 in Fig. 6.

F16.7. Level displacement curves surrounding a cusp tip : solid lines, positive displacement; dashed lines,
negative displacement.

The portion away from the cusp tip is singular in displacement like O(x; —f(x, 1) %)
from (31). This is much like the isotropic case, except that the front running portion on the
right has its singularity in front of the wave front. That is, as the wave propagates past a
fixed point x,, x; the disturbance is felt before the wave front actually arrives. The trailing
part of the wave front is of different sign and has its — 3 displacement singularity following
the front. The region interior to the cusp is O(1) by (31).

From (32), the displacement is singular like O(x;—f(x,, )]~ * as the cusp tip is
approached from any direction, except on the line determined by @ = ®” = 0, where it is
zero. And, as seen in Fig. 7, this line divides positive and negative portions of the response.
The cusp tip is thus a propagating line singularity of order —$, as reported by Kraut [3],
for the line loading (2).

The term F, in (31) and (32) contains

exp{— %(Dc IOg[R(Xc)]}|0¢-= am = [R(J]™ Zml .= 4m

for @, = ®ggpl,-,, and m = 1,2,3,.... This is consistent with the interpretation of 1/R
as the reflection coefficient on (II). This £ =8 term gives all odd reflections of Q" = 0.
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The ¢ = 6 term has singularities at ®g0o = 4m—2, m = 1,2,3,..., and results in the
factors [R(y,)] ™2™ " for the unreflected portion and all even reflections.

The response at a specific time and location in the plate is approximated by (31) and
(32). In order to use the calculations leading to Fig. 6 and to have cusp tips involved, the
response is considered at one half the time elapse in Fig. 6 on a portion of a fixed horizontal
line near the lower plate face x; = — H. The two lowest modes, not included in (19),
contribute a singular surface wave on the upper face x; = H for the impulsive input (2).
Thus, this response is more meaningful if this region is avoided. Of course, the surface wave
response merely adds to any results obtained here.

A greatly magnified portion of the plate near the lower face is shown in Fig. 8, along with

the wave fronts present. The fixed horizontal line x; = ~0-89H is chosen to pass through a
A
d Qg‘l\
(m_ ~ (1), s
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FiG. 8. Approximate response at t = 2H({p/cs5)}/0-34 on a portion of the line x5 = —0-89H.

variety of wave fronts, and near to two cusp tips. In the isotropic case the first three wave
fronts encountered from right to left would be denoted in terms of primary and secondary
(dilatational and equivoluminal) waves as PPP, PPPP and PPPS. The dimensionless hori-
zontal coordinate L is defined in (26).

The following equation defines the dimensionless displacement components 4’ and w’
and gives the approximate integral representation, derived as suggested in Section 4, which
contains all of the singularities corresponding to the wave fronts in Fig. 8.
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The functions U, W, f;and h; are defined following (17). This sum of integrals appears in the
order of their contribution to the response associated with the wave fronts and cusp tips as
they are encountered in Fig. 8 from right to left. They are further identified with the wave
fronts by the parameters Q1 or Q" listed on the left of (33), including, in some cases, the
number of reflections which have taken place. Also the integers m/pq associated with each
integral are listed. The value of the phase function giving rise to a wave-front singularity by
(25) is indicated by the value or values of m. The integers £pq identify the phase functions
(23) involved. The third integral for @ = 6 has a summation which is over all seven com-
binations of #pq listed on the left. Similarly, the sixth integral for Q4" = 2 involves three
combinations of £pq. The fifth integral contains wave-front singularities corresponding to
both crossings of QP = 0.

It should be emphasized that many integrals are not included in (33), which might add
small, but nonzero, contributions to the response. However, this is a good approximate
response to the impulsive input (2), since the significant values of the response occur near
the wave fronts and are contained in the integrals (33). The response to other impulsive
inputs (for example, the rectangular impulse [H(t) — H(t —t,)}/t, might replace &, (¢) in (2))
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could be derived by convolution integrals on this representation or on wave-front approxi-
mations to (33). The artificial singularities at the wave fronts would be avoided in this
manner and the approximation derived from (33) would still be accurate if the inputs
were sufficiently sharp.

The integrals in (33) could form the basis of an accurate numerical integration for the
high-frequency response. However, (33) will only be approximated by use of (31) and (32).
This approximate response ts shown at the bottom of Fig. 8 for the displacement com-
ponent u'. The wave-front singularities are shown directly beneath the corresponding wave
fronts.

The approximations near the cusp tips by (32) are minuscule for this particular case,
and they are displayed in greatly magnified inserts in Fig. 8. The smallness of these and other
contributions for this particular time and location in the plate is attributed to extremely
small reflection coefficients.t However, the reflection coefficients are not small everywhere
and the results in Fig. 8 serve to illustrate a representative approximate response.

The magnitudes of the singular displacement responses are illustrated in Fig. 8 by
vectors attached to the wave fronts. The magnitudes and directions simply result from the
approximation (31) and the ratios + Wh;/Uf;, taken from the integrals (33). The three
on the right are magnified by amounts indicated on the vectors.

Two interesting reflection coefficients, other than R on (I) and 1/R on (II), occur in
these representations. The reflection of QP = 0 (2nd Ref.) into QY = 6 gives rise to
one of these. The rather complicated summation in the third integral in (33) reduces to
R* 1+ R) at the wave front Q¥ = 6. The resulting reflection coefficient is f,(1+ R)/f,
for the displacement component u. The other reflection coefficient is for Q¥ = 0 into
oY = 2,and itis f,(1+1/R)/f; for u.

On (I) R is very small in the approximations for the first three wave responses on the
right of Fig. 8, which causes the magnitudes of their singularities to be relatively small. On
(II) 1 + 1/R is very small in the approximation near the tip of Q4" = 2. The approximation
near the tip of QP = 0 (1st Ref) is small because f; is almost zero.

The displacements on Q¥ = 0 are essentially in the same direction at both wave fronts,
which is contrary to the results in Fig. 7. This is due to the change in sign of f, near the
tip of QP = 0 (1st Ref), just mentioned.

The accuracy of these approximations diminishes rapidly away from the respective wave
fronts. It is argued that the response to impulsive inputs is small away from the wave fronts.
However, a more exact evaluation of the integrals in (33) and of other contributing integrals
would have to be made in order to make definite statements about the response in the gaps
between the approximations in Fig. 8.
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APPENDIX

Constants appearing in the text are

€33Css i C33Cs5s .
¢ = (—1y j=12
Css(c1l—css)+(cl3+css)2 €33(¢1y —Css)—(C13+C55)" T

C11€33 (—1y €33Css j=3.4
. ) - 3 Ty
7 essley —css)+(crz+ess)? C33(€11 —Css)—(C13+Cs5)

_ [ess(cqy _Css)+(c13+css)2] [e3slery _Css)“(cis'*‘css)z]

Cs
€33€55(C1; —Cs5)° ’
. = €33C55(C11 —C55)/C13
6 — 2
c33(c1—¢€s5)— (€13 +¢s5)
CislCi3+¢ C1alec 3 +C55)—c33(c 1 —¢C .
¢ = 13(€13+Cs5) S+ (= 1) 13(€13+C55)—€33(¢11 —C55) =178,

Css5(Cyy —Css)+(C13+Css) c33(c 1 —Cs5)—(Cy3 ‘i‘css)2 ’

a= (533/‘355)%-

In the isotropic case, ¢, = —1,¢; =3—4v,¢c3 =0, ¢c, = H1—v), c5 =1, cg = (1 =)/,
c; = (2=v)/(1—v), cg = —(2—3v)/(1—v) and a = [2(1 —v)/(1 —2v)]*, where v is Poisson’s
ratio.
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The functions in (28) and (29) are

Fi(y) = @0 el r® —cs(L+ 7] [61(1 +x2)+cz(g(x))5}i‘
! c (g + e[ 1+ 22 —cs(1+ 02 51+ 1) +ealg)? |
i) = — 2500 [ea(1+ %)+ ca(800) *

2 (L= {8+ call + 12 —es(1+ )1}

Fy(p) = —deyax(+0/er i = ¢55)

? {e @) + el + 7 —es(L+ )21 eall+ %) + calg) T

_ I+x (’1(8(1))}*'52[14‘)(2—05(1”‘X)Z]

F4(X) :

B 1—yx Cx(g(X));:‘*‘Cz[l +Xz_cs(1 +X)2].

(Received 28 June 1971 ; revised 1 March 1972)

AGcTpakT—METO/, HCIIOJIB30BAHHBIA B NPEABLAYILIEM K H30TPOMHBIM UIACTHHKAM, o6obLlaercs K aHU30T-
POINHBLIM TUTACTHKAM, C LEIbIO OMPENENCHHS NEPEXOAHOH XapaKTEPUCTHKYM OIS BHICOKOW HaCTOTHI, IS
Cllydaes, KOra HeKOTOpbie U3 GPOHTOB BOJIH ABAAIOTCA 3a0CTPEHHbIE. Haxonurcs muoxecTBO GpOHTOB
BOJIH, KOTOPbIE TIPOUCXOASAT B PE3Y/IbTATE MHOTOKPATHbBIX OTPAXEHHI B INIACTMHKE W KOTOPbIE HE CYLUIECT-
BYIOT [UIA CITy4ast H30TPOMMH U B HEKOTODBIX Cllydasx aHu3oTponuu. Mcxoas u3 uHTErpanbHeIX NMpeacra-
BIIEHHI XapaKTEPUCTHKH, ONPENeIstoTCs MPUOITHKEHUS DPOHTA BOIHBI M MPUGIIMKEHHAS XapAKTEPUCTHKA

BOIM3M KOHLIEBLIX YACTEH 330CTPEHHBIX HPOHTOB BOJIH.



